Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 131 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Localization of Ultra-dense Emitters with Neural Networks (2305.05542v1)

Published 7 May 2023 in eess.SP, cs.CV, cs.LG, physics.data-an, physics.flu-dyn, physics.optics, and stat.CO

Abstract: Single-Molecule Localization Microscopy (SMLM) has expanded our ability to visualize subcellular structures but is limited in its temporal resolution. Increasing emitter density will improve temporal resolution, but current analysis algorithms struggle as emitter images significantly overlap. Here we present a deep convolutional neural network called LUENN which utilizes a unique architecture that rejects the isolated emitter assumption; it can smoothly accommodate emitters that range from completely isolated to co-located. This architecture, alongside an accurate estimator of location uncertainty, extends the range of usable emitter densities by a factor of 6 to over 31 emitters per micrometer-squared with reduced penalty to localization precision and improved temporal resolution. Apart from providing uncertainty estimation, the algorithm improves usability in laboratories by reducing imaging times and easing requirements for successful experiments.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube