Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 131 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Effects of sub-word segmentation on performance of transformer language models (2305.05480v3)

Published 9 May 2023 in cs.CL, cs.AI, and cs.LG

Abstract: Language modeling is a fundamental task in natural language processing, which has been thoroughly explored with various architectures and hyperparameters. However, few studies focus on the effect of sub-word segmentation on the performance of LMs. In this paper, we compare GPT and BERT models trained with the statistical segmentation algorithm BPE vs. two unsupervised algorithms for morphological segmentation -- Morfessor and StateMorph. We train the models for several languages -- including ones with very rich morphology -- and compare their performance with different segmentation algorithms, vocabulary sizes, and model sizes. The results show that training with morphological segmentation allows the LMs to: 1. achieve lower perplexity, 2. converge more efficiently in terms of training time, and 3. achieve equivalent or better evaluation scores on downstream tasks. Lastly, we show 4. that LMs of smaller size using morphological segmentation can perform comparably to models of larger size trained with BPE -- both in terms of (1) perplexity and (3) scores on downstream tasks. Points (2) and (4) impact on sustainability of LMs, since they reduce the model cost: size and computation time. While (2) reduces cost only in the training phase, (4) does so also in the inference phase.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.