Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Fast Many-to-Many Routing for Ridesharing with Multiple Pickup and Dropoff Locations (2305.05417v1)

Published 9 May 2023 in cs.DS

Abstract: We introduce KaRRi, an improved algorithm for scheduling a fleet of shared vehicles as it is used by services like UberXShare and Lyft Shared. We speed up the basic online algorithm that looks for all possible insertions of a new customer into a set of existing routes, we generalize the objective function, and efficiently support a large number of possible pick-up and drop-off locations. This lays an algorithmic foundation for ridesharing systems with higher vehicle occupancy -- enabling greatly reduced cost and ecological impact at comparable service quality. We find that our algorithm computes assignments between vehicles and riders several times faster than a previous state-of-the-art approach. Further, we observe that allowing meeting points for vehicles and riders can reduce the operating cost of vehicle fleets by up to $15\%$ while also reducing passenger wait and trip times.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.