Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

GPT-NAS: Evolutionary Neural Architecture Search with the Generative Pre-Trained Model (2305.05351v4)

Published 9 May 2023 in cs.CV and cs.AI

Abstract: Neural Architecture Search (NAS) has emerged as one of the effective methods to design the optimal neural network architecture automatically. Although neural architectures have achieved human-level performances in several tasks, few of them are obtained from the NAS method. The main reason is the huge search space of neural architectures, making NAS algorithms inefficient. This work presents a novel architecture search algorithm, called GPT-NAS, that optimizes neural architectures by Generative Pre-Trained (GPT) model with an evolutionary algorithm (EA) as the search strategy. In GPT-NAS, we assume that a generative model pre-trained on a large-scale corpus could learn the fundamental law of building neural architectures. Therefore, GPT-NAS leverages the GPT model to propose reasonable architecture components given the basic one and then utilizes EAs to search for the optimal solution. Such an approach can largely reduce the search space by introducing prior knowledge in the search process. Extensive experimental results show that our GPT-NAS method significantly outperforms seven manually designed neural architectures and thirteen architectures provided by competing NAS methods. In addition, our experiments also indicate that the proposed algorithm improves the performance of finely tuned neural architectures by up to about 12% compared to those without GPT, further demonstrating its effectiveness in searching neural architectures.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.