Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Less is More: Removing Text-regions Improves CLIP Training Efficiency and Robustness (2305.05095v1)

Published 8 May 2023 in cs.CV and cs.AI

Abstract: The CLIP (Contrastive Language-Image Pre-training) model and its variants are becoming the de facto backbone in many applications. However, training a CLIP model from hundreds of millions of image-text pairs can be prohibitively expensive. Furthermore, the conventional CLIP model doesn't differentiate between the visual semantics and meaning of text regions embedded in images. This can lead to non-robustness when the text in the embedded region doesn't match the image's visual appearance. In this paper, we discuss two effective approaches to improve the efficiency and robustness of CLIP training: (1) augmenting the training dataset while maintaining the same number of optimization steps, and (2) filtering out samples that contain text regions in the image. By doing so, we significantly improve the classification and retrieval accuracy on public benchmarks like ImageNet and CoCo. Filtering out images with text regions also protects the model from typographic attacks. To verify this, we build a new dataset named ImageNet with Adversarial Text Regions (ImageNet-Attr). Our filter-based CLIP model demonstrates a top-1 accuracy of 68.78\%, outperforming previous models whose accuracy was all below 50\%.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube