Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Multi-Scale Energy (MuSE) plug and play framework for inverse problems (2305.04775v2)

Published 8 May 2023 in eess.IV

Abstract: We introduce multi-scale energy models to learn the prior distribution of images, which can be used in inverse problems to derive the Maximum A Posteriori (MAP) estimate and to sample from the posterior distribution. Compared to the traditional single-scale energy models, the multi-scale strategy improves the estimation accuracy and convergence of the MAP algorithm, even when it is initialized far away from the solution. We propose two kinds of multi-scale strategies: a) the explicit (e-MuSE) framework, where we use a sequence of explicit energies, each corresponding to a smooth approximation of the original negative log-prior, and b) the implicit (i-MuSE), where we rely on a single energy function whose gradients at different scales closely match the corresponding e-MuSE gradients. Although both schemes improve convergence and accuracy, the e-MuSE MAP solution depends on the scheduling strategy, including the choice of intermediate scales and exit conditions. In contrast, the i-MuSE formulation is significantly simpler, resulting in faster convergence and improved performance. We compare the performance of the proposed MuSE models in the context of Magnetic Resonance (MR) image recovery. The results demonstrate that the multi-scale framework yields a MAP reconstruction comparable in quality to the End-to-End (E2E) trained models, while being relatively unaffected by the changes in the forward model. In addition, the i-MuSE scheme also allows the generation of samples from the posterior distribution, enabling us to estimate the uncertainty maps.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube