Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Strategy for Rapid Diabetic Retinopathy Exposure Based on Enhanced Feature Extraction Processing (2305.04724v1)

Published 8 May 2023 in cs.CV and cs.AI

Abstract: In the modern world, one of the most severe eye infections brought on by diabetes is known as diabetic retinopathy, which will result in retinal damage, and, thus, lead to blindness. Diabetic retinopathy can be well treated with early diagnosis. Retinal fundus images of humans are used to screen for lesions in the retina. However, detecting DR in the early stages is challenging due to the minimal symptoms. Furthermore, the occurrence of diseases linked to vascular anomalies brought on by DR aids in diagnosing the condition. Nevertheless, the resources required for manually identifying the lesions are high. Similarly, training for Convolutional Neural Networks is more time-consuming. This proposed research aims to improve diabetic retinopathy diagnosis by developing an enhanced deep learning model for timely DR identification that is potentially more accurate than existing CNN-based models. The proposed model will detect various lesions from retinal images in the early stages. First, characteristics are retrieved from the retinal fundus picture and put into the EDLM for classification. For dimensionality reduction, EDLM is used. Additionally, the classification and feature extraction processes are optimized using the stochastic gradient descent optimizer. The EDLM effectiveness is assessed on the KAG GLE dataset with 3459 retinal images, and results are compared over VGG16, VGG19, RESNET18, RESNET34, and RESNET50.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.