Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Computation of Rate-Distortion-Perception Function under f-Divergence Perception Constraints (2305.04604v1)

Published 8 May 2023 in cs.IT, math.IT, and math.OC

Abstract: In this paper, we study the computation of the rate-distortion-perception function (RDPF) for discrete memoryless sources subject to a single-letter average distortion constraint and a perception constraint that belongs to the family of f-divergences. For that, we leverage the fact that RDPF, assuming mild regularity conditions on the perception constraint, forms a convex programming problem. We first develop parametric characterizations of the optimal solution and utilize them in an alternating minimization approach for which we prove convergence guarantees. The resulting structure of the iterations of the alternating minimization approach renders the implementation of a generalized Blahut-Arimoto (BA) type of algorithm infeasible. To overcome this difficulty, we propose a relaxed formulation of the structure of the iterations in the alternating minimization approach, which allows for the implementation of an approximate iterative scheme. This approximation is shown, via the derivation of necessary and sufficient conditions, to guarantee convergence to a globally optimal solution. We also provide sufficient conditions on the distortion and the perception constraints which guarantee that our algorithm converges exponentially fast. We corroborate our theoretical results with numerical simulations, and we draw connections with existing results.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube