Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Improved error estimates for a modified exponential Euler method for the semilinear stochastic heat equation with rough initial data (2305.04558v2)

Published 8 May 2023 in math.NA and cs.NA

Abstract: A class of stochastic Besov spaces $Bp L2(\Omega;\dot H\alpha(\mathcal{O}))$, $1\le p\le\infty$ and $\alpha\in[-2,2]$, is introduced to characterize the regularity of the noise in the semilinear stochastic heat equation \begin{equation*} {\rm d} u -\Delta u {\rm d} t =f(u) {\rm d} t + {\rm d} W(t) , \end{equation*} under the following conditions for some $\alpha\in(0,1]$: $$ \Big| \int_0te{-(t-s)A}{\rm d} W(s) \Big|{L2(\Omega;L2(\mathcal{O}))} \le C t{\frac{\alpha}{2}} \quad\mbox{and}\quad \Big| \int_0te{-(t-s)A}{\rm d} W(s) \Big|{B\infty L2(\Omega;\dot H\alpha(\mathcal{O}))}\le C. $$ The conditions above are shown to be satisfied by both trace-class noises (with $\alpha=1$) and one-dimensional space-time white noises (with $\alpha=\frac12$). The latter would fail to satisfy the conditions with $\alpha=\frac12$ if the stochastic Besov norm $|\cdot|{B\infty L2(\Omega;\dot H\alpha(\mathcal{O}))}$ is replaced by the classical Sobolev norm $|\cdot|{L2(\Omega;\dot H\alpha(\mathcal{O}))}$, and this often causes reduction of the convergence order in the numerical analysis of the semilinear stochastic heat equation. In this article, the convergence of a modified exponential Euler method, with a spectral method for spatial discretization, is proved to have order $\alpha$ in both time and space for possibly nonsmooth initial data in $L4(\Omega;\dot{H}{\beta}(\mathcal{O}))$ with $\beta>-1$, by utilizing the real interpolation properties of the stochastic Besov spaces and a class of locally refined stepsizes to resolve the singularity of the solution at $t=0$.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.