Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Generalized Framework for Predictive Clustering and Optimization (2305.04364v1)

Published 7 May 2023 in cs.LG and stat.ML

Abstract: Clustering is a powerful and extensively used data science tool. While clustering is generally thought of as an unsupervised learning technique, there are also supervised variations such as Spath's clusterwise regression that attempt to find clusters of data that yield low regression error on a supervised target. We believe that clusterwise regression is just a single vertex of a largely unexplored design space of supervised clustering models. In this article, we define a generalized optimization framework for predictive clustering that admits different cluster definitions (arbitrary point assignment, closest center, and bounding box) and both regression and classification objectives. We then present a joint optimization strategy that exploits mixed-integer linear programming (MILP) for global optimization in this generalized framework. To alleviate scalability concerns for large datasets, we also provide highly scalable greedy algorithms inspired by the Majorization-Minimization (MM) framework. Finally, we demonstrate the ability of our models to uncover different interpretable discrete cluster structures in data by experimenting with four real-world datasets.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.