Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

On guarded extensions of MMSNP (2305.04234v4)

Published 7 May 2023 in cs.CC and cs.LO

Abstract: Feder and Vardi showed that the class Monotone Monadic SNP without inequality (MMSNP) has a P vs NP-complete dichotomy if and only if such a dichotomy holds for finite-domain Constraint Satisfaction Problems. Moreover, they showed that none of the three classes obtained by removing one of the defining properties of MMSNP (monotonicity, monadicity, no inequality) has a dichotomy. The overall objective of this paper is to study the gaps between MMSNP and each of these three superclasses, where the existence of a dichotomy remains unknown. For the gap between MMSNP and Monotone SNP without inequality, we study the class Guarded Monotone SNP without inequality (GMSNP) introduced by Bienvenu, ten Cate, Lutz, and Wolter, and prove that GMSNP has a dichotomy if and only if a dichotomy holds for GMSNP problems over signatures consisting of a unique relation symbol. For the gap between MMSNP and MMSNP with inequality, we have two contributions. We introduce a new class MMSNP with guarded inequality, that lies between MMSNP and MMSNP with inequality and that is strictly more expressive than the former and still has a dichotomy. Apart from that, we give a detailed proof that every problem in NP is polynomial-time equivalent to a problem in MMSNP with inequality, which implies the absence of a dichotomy for the latter. For the gap between MMSNP and Monadic SNP without inequality, we introduce a logic that extends the class of Matrix Partitions in a similar way how MMSNP extends CSP, and pose an open question about the existence of a dichotomy for this class. Finally, we revisit the theorem of Feder and Vardi, which claims that the class NP embeds into MMSNP with inequality. We give a detailed proof of this theorem as it ensures no dichotomy for the right-hand side class of each of the three gaps.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com