Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Influence of Swarm Intelligence in Data Clustering Mechanisms (2305.04217v1)

Published 7 May 2023 in cs.NE and cs.AI

Abstract: Data mining focuses on discovering interesting, non-trivial and meaningful information from large datasets. Data clustering is one of the unsupervised and descriptive data mining task which group data based on similarity features and physically stored together. As a partitioning clustering method, K-means is widely used due to its simplicity and easiness of implementation. But this method has limitations such as local optimal convergence and initial point sensibility. Due to these impediments, nature inspired Swarm based algorithms such as Artificial Bee Colony Algorithm, Ant Colony Optimization, Firefly Algorithm, Bat Algorithm and etc. are used for data clustering to cope with larger datasets with lack and inconsistency of data. In some cases, those algorithms are used with traditional approaches such as K-means as hybrid approaches to produce better results. This paper reviews the performances of these new approaches and compares which is best for certain problematic situation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.