Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

On High-dimensional and Low-rank Tensor Bandits (2305.03884v1)

Published 6 May 2023 in stat.ML, cs.IT, cs.LG, eess.SP, and math.IT

Abstract: Most existing studies on linear bandits focus on the one-dimensional characterization of the overall system. While being representative, this formulation may fail to model applications with high-dimensional but favorable structures, such as the low-rank tensor representation for recommender systems. To address this limitation, this work studies a general tensor bandits model, where actions and system parameters are represented by tensors as opposed to vectors, and we particularly focus on the case that the unknown system tensor is low-rank. A novel bandit algorithm, coined TOFU (Tensor Optimism in the Face of Uncertainty), is developed. TOFU first leverages flexible tensor regression techniques to estimate low-dimensional subspaces associated with the system tensor. These estimates are then utilized to convert the original problem to a new one with norm constraints on its system parameters. Lastly, a norm-constrained bandit subroutine is adopted by TOFU, which utilizes these constraints to avoid exploring the entire high-dimensional parameter space. Theoretical analyses show that TOFU improves the best-known regret upper bound by a multiplicative factor that grows exponentially in the system order. A novel performance lower bound is also established, which further corroborates the efficiency of TOFU.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.