A Non-Asymptotic Analysis of Mismatched Guesswork (2305.03850v1)
Abstract: The problem of mismatched guesswork considers the additional cost incurred by using a guessing function which is optimal for a distribution $q$ when the random variable to be guessed is actually distributed according to a different distribution $p$. This problem has been well-studied from an asymptotic perspective, but there has been little work on quantifying the difference in guesswork between optimal and suboptimal strategies for a finite number of symbols. In this non-asymptotic regime, we consider a definition for mismatched guesswork which we show is equivalent to a variant of the Kendall tau permutation distance applied to optimal guessing functions for the mismatched distributions. We use this formulation to bound the cost of guesswork under mismatch given a bound on the total variation distance between the two distributions.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.