Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

LMEye: An Interactive Perception Network for Large Language Models (2305.03701v6)

Published 5 May 2023 in cs.CV and cs.AI

Abstract: Training a Multimodal LLM (MLLM) from scratch, like GPT-4, is resource-intensive. Regarding LLMs as the core processor for multimodal information, our paper introduces LMEye, a human-like eye with a play-and-plug interactive perception network, designed to enable dynamic interaction between LLMs and external vision information. Previous methods incorporate visual information into LLMs with a simple visual mapping network or Q-former from BLIP-2. Such networks project the image feature once yet do not consider the interaction between the image and the human input query. Hence, the obtained visual information without being connected to human intention may be inadequate for LLMs to generate intention-following responses, which we refer to as static visual information. LMEye addresses this issue by allowing the LLM to request the desired visual information aligned with various human instructions, which we term as the dynamic visual information interaction. Specifically, LMEye consists of a simple visual mapping network to provide the basic perception of an image for LLMs. It also contains additional modules responsible for acquiring requests from LLMs, performing request-based visual information interaction, and transmitting the resulting interacted visual information to LLMs, respectively. In this way, LLMs act to understand the human query, deliver the corresponding request to the request-based visual information interaction module, and generate the response based on the interleaved multimodal information. We evaluate LMEye through extensive experiments on some multimodal benchmarks, demonstrating that it significantly improves the zero-shot performance on various multimodal tasks compared to previous methods, with less parameters.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.