Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

GAANet: Ghost Auto Anchor Network for Detecting Varying Size Drones in Dark (2305.03425v1)

Published 5 May 2023 in cs.CV

Abstract: The usage of drones has tremendously increased in different sectors spanning from military to industrial applications. Despite all the benefits they offer, their misuse can lead to mishaps, and tackling them becomes more challenging particularly at night due to their small size and low visibility conditions. To overcome those limitations and improve the detection accuracy at night, we propose an object detector called Ghost Auto Anchor Network (GAANet) for infrared (IR) images. The detector uses a YOLOv5 core to address challenges in object detection for IR images, such as poor accuracy and a high false alarm rate caused by extended altitudes, poor lighting, and low image resolution. To improve performance, we implemented auto anchor calculation, modified the conventional convolution block to ghost-convolution, adjusted the input channel size, and used the AdamW optimizer. To enhance the precision of multiscale tiny object recognition, we also introduced an additional extra-small object feature extractor and detector. Experimental results in a custom IR dataset with multiple classes (birds, drones, planes, and helicopters) demonstrate that GAANet shows improvement compared to state-of-the-art detectors. In comparison to GhostNet-YOLOv5, GAANet has higher overall mean average precision (mAP@50), recall, and precision around 2.5\%, 2.3\%, and 1.4\%, respectively. The dataset and code for this paper are available as open source at https://github.com/ZeeshanKaleem/GhostAutoAnchorNet.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com