Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Testing Convex Truncation (2305.03146v2)

Published 4 May 2023 in cs.DS, cs.CC, math.PR, math.ST, and stat.TH

Abstract: We study the basic statistical problem of testing whether normally distributed $n$-dimensional data has been truncated, i.e. altered by only retaining points that lie in some unknown truncation set $S \subseteq \mathbb{R}n$. As our main algorithmic results, (1) We give a computationally efficient $O(n)$-sample algorithm that can distinguish the standard normal distribution $N(0,I_n)$ from $N(0,I_n)$ conditioned on an unknown and arbitrary convex set $S$. (2) We give a different computationally efficient $O(n)$-sample algorithm that can distinguish $N(0,I_n)$ from $N(0,I_n)$ conditioned on an unknown and arbitrary mixture of symmetric convex sets. These results stand in sharp contrast with known results for learning or testing convex bodies with respect to the normal distribution or learning convex-truncated normal distributions, where state-of-the-art algorithms require essentially $n{\sqrt{n}}$ samples. An easy argument shows that no finite number of samples suffices to distinguish $N(0,I_n)$ from an unknown and arbitrary mixture of general (not necessarily symmetric) convex sets, so no common generalization of results (1) and (2) above is possible. We also prove that any algorithm (computationally efficient or otherwise) that can distinguish $N(0,I_n)$ from $N(0,I_n)$ conditioned on an unknown symmetric convex set must use $\Omega(n)$ samples. This shows that the sample complexity of each of our algorithms is optimal up to a constant factor.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.