Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Multiteam semantics for interventionist counterfactuals: probabilities and causation (2305.02613v2)

Published 4 May 2023 in cs.LO

Abstract: In [4], we introduced an extension of team semantics (causal teams) which assigns an interpretation to interventionist counterfactuals and causal notions based on them (as e.g. in Pearl's and Woodward's manipulationist approaches to causation). We now present a further extension of this framework (causal multiteams) which allows us to talk about probabilistic causal statements. We analyze the expressivity resources of two causal-probabilistic languages, one finitary and one infinitary. We show that many causal-probabilistic notions from the field of causal inference can be expressed already in the finitary language, and we prove a normal form theorem that throws new light on Pearl's ``ladder of causation''. On the other hand, we provide an exact semantic characterization of the infinitary language, which shows that this language captures precisely those causal-probabilistic statements that do not commit us to any specific interpretation of probability; and we prove that no usual, countable language is apt for this task.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube