Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Toward Evaluating Robustness of Reinforcement Learning with Adversarial Policy (2305.02605v3)

Published 4 May 2023 in cs.LG

Abstract: Reinforcement learning agents are susceptible to evasion attacks during deployment. In single-agent environments, these attacks can occur through imperceptible perturbations injected into the inputs of the victim policy network. In multi-agent environments, an attacker can manipulate an adversarial opponent to influence the victim policy's observations indirectly. While adversarial policies offer a promising technique to craft such attacks, current methods are either sample-inefficient due to poor exploration strategies or require extra surrogate model training under the black-box assumption. To address these challenges, in this paper, we propose Intrinsically Motivated Adversarial Policy (IMAP) for efficient black-box adversarial policy learning in both single- and multi-agent environments. We formulate four types of adversarial intrinsic regularizers -- maximizing the adversarial state coverage, policy coverage, risk, or divergence -- to discover potential vulnerabilities of the victim policy in a principled way. We also present a novel bias-reduction method to balance the extrinsic objective and the adversarial intrinsic regularizers adaptively. Our experiments validate the effectiveness of the four types of adversarial intrinsic regularizers and the bias-reduction method in enhancing black-box adversarial policy learning across a variety of environments. Our IMAP successfully evades two types of defense methods, adversarial training and robust regularizer, decreasing the performance of the state-of-the-art robust WocaR-PPO agents by 34\%-54\% across four single-agent tasks. IMAP also achieves a state-of-the-art attacking success rate of 83.91\% in the multi-agent game YouShallNotPass. Our code is available at \url{https://github.com/x-zheng16/IMAP}.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets