Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Can LLMs Capture Human Preferences? (2305.02531v6)

Published 4 May 2023 in cs.CL and cs.AI

Abstract: We explore the viability of LLMs, specifically OpenAI's GPT-3.5 and GPT-4, in emulating human survey respondents and eliciting preferences, with a focus on intertemporal choices. Leveraging the extensive literature on intertemporal discounting for benchmarking, we examine responses from LLMs across various languages and compare them to human responses, exploring preferences between smaller, sooner, and larger, later rewards. Our findings reveal that both GPT models demonstrate less patience than humans, with GPT-3.5 exhibiting a lexicographic preference for earlier rewards, unlike human decision-makers. Though GPT-4 does not display lexicographic preferences, its measured discount rates are still considerably larger than those found in humans. Interestingly, GPT models show greater patience in languages with weak future tense references, such as German and Mandarin, aligning with existing literature that suggests a correlation between language structure and intertemporal preferences. We demonstrate how prompting GPT to explain its decisions, a procedure we term "chain-of-thought conjoint," can mitigate, but does not eliminate, discrepancies between LLM and human responses. While directly eliciting preferences using LLMs may yield misleading results, combining chain-of-thought conjoint with topic modeling aids in hypothesis generation, enabling researchers to explore the underpinnings of preferences. Chain-of-thought conjoint provides a structured framework for marketers to use LLMs to identify potential attributes or factors that can explain preference heterogeneity across different customers and contexts.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)