Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

ANetQA: A Large-scale Benchmark for Fine-grained Compositional Reasoning over Untrimmed Videos (2305.02519v1)

Published 4 May 2023 in cs.CV and cs.CL

Abstract: Building benchmarks to systemically analyze different capabilities of video question answering (VideoQA) models is challenging yet crucial. Existing benchmarks often use non-compositional simple questions and suffer from language biases, making it difficult to diagnose model weaknesses incisively. A recent benchmark AGQA poses a promising paradigm to generate QA pairs automatically from pre-annotated scene graphs, enabling it to measure diverse reasoning abilities with granular control. However, its questions have limitations in reasoning about the fine-grained semantics in videos as such information is absent in its scene graphs. To this end, we present ANetQA, a large-scale benchmark that supports fine-grained compositional reasoning over the challenging untrimmed videos from ActivityNet. Similar to AGQA, the QA pairs in ANetQA are automatically generated from annotated video scene graphs. The fine-grained properties of ANetQA are reflected in the following: (i) untrimmed videos with fine-grained semantics; (ii) spatio-temporal scene graphs with fine-grained taxonomies; and (iii) diverse questions generated from fine-grained templates. ANetQA attains 1.4 billion unbalanced and 13.4 million balanced QA pairs, which is an order of magnitude larger than AGQA with a similar number of videos. Comprehensive experiments are performed for state-of-the-art methods. The best model achieves 44.5% accuracy while human performance tops out at 84.5%, leaving sufficient room for improvement.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.