Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

From Grassmannian to Simplicial High-Dimensional Expanders (2305.02512v2)

Published 4 May 2023 in math.CO and cs.DM

Abstract: In this paper, we present a new construction of simplicial complexes of subpolynomial degree with arbitrarily good local spectral expansion. Previously, the only known high-dimensional expanders (HDXs) with arbitrarily good expansion and less than polynomial degree were based on one of two constructions, namely Ramanujan complexes and coset complexes. In contrast, our construction is a Cayley complex over the group $\mathbb{F}_2k$, with Cayley generating set given by a Grassmannian HDX. Our construction is in part motivated by a coding-theoretic interpretation of Grassmannian HDXs that we present, which provides a formal connection between Grassmannian HDXs, simplicial HDXs, and LDPC codes. We apply this interpretation to prove a general characterization of the 1-homology groups over $\mathbb{F}_2$ of Cayley simplicial complexes over $\mathbb{F}_2k$. Using this result, we construct simplicial complexes on $N$ vertices with arbitrarily good local expansion for which the dimension of the 1-homology group grows as $\Omega(\log2N)$. No prior constructions in the literature have been shown to achieve as large a 1-homology group.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)