Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Backdoor Learning on Sequence to Sequence Models (2305.02424v1)

Published 3 May 2023 in cs.CL

Abstract: Backdoor learning has become an emerging research area towards building a trustworthy machine learning system. While a lot of works have studied the hidden danger of backdoor attacks in image or text classification, there is a limited understanding of the model's robustness on backdoor attacks when the output space is infinite and discrete. In this paper, we study a much more challenging problem of testing whether sequence-to-sequence (seq2seq) models are vulnerable to backdoor attacks. Specifically, we find by only injecting 0.2\% samples of the dataset, we can cause the seq2seq model to generate the designated keyword and even the whole sentence. Furthermore, we utilize Byte Pair Encoding (BPE) to create multiple new triggers, which brings new challenges to backdoor detection since these backdoors are not static. Extensive experiments on machine translation and text summarization have been conducted to show our proposed methods could achieve over 90\% attack success rate on multiple datasets and models.

Citations (17)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.