Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Calibrated Explanations: with Uncertainty Information and Counterfactuals (2305.02305v3)

Published 3 May 2023 in cs.AI and cs.LG

Abstract: While local explanations for AI models can offer insights into individual predictions, such as feature importance, they are plagued by issues like instability. The unreliability of feature weights, often skewed due to poorly calibrated ML models, deepens these challenges. Moreover, the critical aspect of feature importance uncertainty remains mostly unaddressed in Explainable AI (XAI). The novel feature importance explanation method presented in this paper, called Calibrated Explanations (CE), is designed to tackle these issues head-on. Built on the foundation of Venn-Abers, CE not only calibrates the underlying model but also delivers reliable feature importance explanations with an exact definition of the feature weights. CE goes beyond conventional solutions by addressing output uncertainty. It accomplishes this by providing uncertainty quantification for both feature weights and the model's probability estimates. Additionally, CE is model-agnostic, featuring easily comprehensible conditional rules and the ability to generate counterfactual explanations with embedded uncertainty quantification. Results from an evaluation with 25 benchmark datasets underscore the efficacy of CE, making it stand as a fast, reliable, stable, and robust solution.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.