Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

DocLangID: Improving Few-Shot Training to Identify the Language of Historical Documents (2305.02208v1)

Published 3 May 2023 in cs.CV

Abstract: Language identification describes the task of recognizing the language of written text in documents. This information is crucial because it can be used to support the analysis of a document's vocabulary and context. Supervised learning methods in recent years have advanced the task of language identification. However, these methods usually require large labeled datasets, which often need to be included for various domains of images, such as documents or scene images. In this work, we propose DocLangID, a transfer learning approach to identify the language of unlabeled historical documents. We achieve this by first leveraging labeled data from a different but related domain of historical documents. Secondly, we implement a distance-based few-shot learning approach to adapt a convolutional neural network to new languages of the unlabeled dataset. By introducing small amounts of manually labeled examples from the set of unlabeled images, our feature extractor develops a better adaptability towards new and different data distributions of historical documents. We show that such a model can be effectively fine-tuned for the unlabeled set of images by only reusing the same few-shot examples. We showcase our work across 10 languages that mostly use the Latin script. Our experiments on historical documents demonstrate that our combined approach improves the language identification performance, achieving 74% recognition accuracy on the four unseen languages of the unlabeled dataset.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.