Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

An Efficient Algorithm for All-Pairs Bounded Edge Connectivity (2305.02132v1)

Published 3 May 2023 in cs.DS and cs.DM

Abstract: Our work concerns algorithms for an unweighted variant of Maximum Flow. In the All-Pairs Connectivity (APC) problem, we are given a graph $G$ on $n$ vertices and $m$ edges, and are tasked with computing the maximum number of edge-disjoint paths from $s$ to $t$ (equivalently, the size of a minimum $(s,t)$-cut) in $G$, for all pairs of vertices $(s,t)$. Although over undirected graphs APC can be solved in essentially optimal $n{2+o(1)}$ time, the true time complexity of APC over directed graphs remains open: this problem can be solved in $\tilde{O}(m\omega)$ time, where $\omega \in [2, 2.373)$ is the exponent of matrix multiplication, but no matching conditional lower bound is known. We study a variant of APC called the $k$-Bounded All Pairs Connectivity ($k$-APC) problem. In this problem, we are given an integer $k$ and graph $G$, and are tasked with reporting the size of a minimum $(s,t)$-cut only for pairs $(s,t)$ of vertices with a minimum cut size less than $k$ (if the minimum $(s,t)$-cut has size at least $k$, we just report it is "large" instead of computing the exact value). We present an algorithm solving $k$-APC in directed graphs in $\tilde{O}((kn)\omega)$ time. This runtime is $\tilde O(n\omega)$ for all $k$ polylogarithmic in $n$, which is essentially optimal under popular conjectures from fine-grained complexity. Previously, this runtime was only known for $k\le 2$ [Georgiadis et al., ICALP 2017]. We also study a variant of $k$-APC, the $k$-Bounded All-Pairs Vertex Connectivity ($k$-APVC) problem, which considers internally vertex-disjoint paths instead of edge-disjoint paths. We present an algorithm solving $k$-APVC in directed graphs in $\tilde{O}(k2n\omega)$ time. Previous work solved an easier version of the $k$-APVC problem in $\tilde O((kn)\omega)$ time [Abboud et al, ICALP 2019].

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)