Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Vision Transformer Approach for Efficient Near-Field Irregular SAR Super-Resolution (2305.02074v2)

Published 3 May 2023 in cs.CV, cs.AI, and eess.SP

Abstract: In this paper, we develop a novel super-resolution algorithm for near-field synthetic-aperture radar (SAR) under irregular scanning geometries. As fifth-generation (5G) millimeter-wave (mmWave) devices are becoming increasingly affordable and available, high-resolution SAR imaging is feasible for end-user applications and non-laboratory environments. Emerging applications such freehand imaging, wherein a handheld radar is scanned throughout space by a user, unmanned aerial vehicle (UAV) imaging, and automotive SAR face several unique challenges for high-resolution imaging. First, recovering a SAR image requires knowledge of the array positions throughout the scan. While recent work has introduced camera-based positioning systems capable of adequately estimating the position, recovering the algorithm efficiently is a requirement to enable edge and Internet of Things (IoT) technologies. Efficient algorithms for non-cooperative near-field SAR sampling have been explored in recent work, but suffer image defocusing under position estimation error and can only produce medium-fidelity images. In this paper, we introduce a mobile-friend vision transformer (ViT) architecture to address position estimation error and perform SAR image super-resolution (SR) under irregular sampling geometries. The proposed algorithm, Mobile-SRViT, is the first to employ a ViT approach for SAR image enhancement and is validated in simulation and via empirical studies.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microw. Theory Techn., vol. 49, no. 9, pp. 1581–1592, Sep. 2001.
  2. M. T. Ghasr, S. Kharkovsky, R. Bohnert, B. Hirst, and R. Zoughi, “30 GHz linear high-resolution and rapid millimeter wave imaging system for NDE,” IEEE Trans. Antennas Propag., vol. 61, no. 9, pp. 4733–4740, Jun. 2013.
  3. M. Garcia-Fernandez, Y. Alvarez-Lopez, and F. L. Heras, “3D-SAR processing of UAV-mounted GPR measurements: Dealing with non-uniform sampling,” in Proc. 14th Eur. Conf. Antennas Propag. (EuCAP), Copenhagen, Denmark, Aug. 2020, pp. 1–5.
  4. J. W. Smith, S. Thiagarajan, R. Willis, Y. Makris, and M. Torlak, “Improved static hand gesture classification on deep convolutional neural networks using novel sterile training technique,” IEEE Access, vol. 9, pp. 10 893–10 902, Jan. 2021.
  5. L. Zheng, J. Bai, X. Zhu, L. Huang, C. Shan, Q. Wu, and L. Zhang, “Dynamic hand gesture recognition in in-vehicle environment based on FMCW radar and transformer,” Sensors, vol. 21, no. 19, p. 6368, Sep. 2021.
  6. J. W. Smith, O. Furxhi, and M. Torlak, “An FCNN-based super-resolution mmWave radar framework for contactless musical instrument interface,” IEEE Trans. Multimedia, pp. 1–1, May 2021.
  7. M. E. Yanik and M. Torlak, “Near-field MIMO-SAR millimeter-wave imaging with sparsely sampled aperture data,” IEEE Access, vol. 7, pp. 31 801–31 819, Mar. 2019.
  8. M. E. Yanik, D. Wang, and M. Torlak, “Development and demonstration of MIMO-SAR mmWave imaging testbeds,” IEEE Access, vol. 8, pp. 126 019–126 038, Jul. 2020.
  9. J. W. Smith, M. E. Yanik, and M. Torlak, “Near-field MIMO-ISAR millimeter-wave imaging,” in Proc. IEEE Radar Conf. (RadarConf), Florance, Italy, Sep. 2020, pp. 1–6.
  10. G. Álvarez Narciandi, J. Laviada, and F. Las-Heras, “Towards turning smartphones into mmWave scanners,” IEEE Access, vol. 9, pp. 45 147–45 154, Mar. 2021.
  11. J. W. Smith and M. Torlak, “Efficient 3-D near-field MIMO-SAR imaging for irregular scanning geometries,” IEEE Access, vol. 10, pp. 10 283–10 294, Jan. 2022.
  12. M. E. Yanik, D. Wang, and M. Torlak, “3-D MIMO-SAR imaging using multi-chip cascaded millimeter-wave sensors,” in Proc. IEEE Global Conf. Signal Inf. Process. (GlobalSIP), Ottawa, ON, Canada, Nov. 2019, pp. 1–5.
  13. G. Álvarez Narciandi, J. Laviada, Y. Álvarez López, G. Ducournau, C. Luxey, C. Belem-Goncalves, F. Gianesello, N. Nachabe, C. D. Rio, and F. Las-Heras, “Freehand system for antenna diagnosis based on amplitude-only data,” IEEE Trans. Antennas Propag., vol. 69, no. 8, pp. 4988–4998, Feb. 2021.
  14. J. Gao, B. Deng, Y. Qin, H. Wang, and X. Li, “Enhanced radar imaging using a complex-valued convolutional neural network,” IEEE Geosci. Remote Sens. Lett., vol. 16, no. 1, pp. 35–39, Sep. 2018.
  15. H. Jing, S. Li, K. Miao, S. Wang, X. Cui, G. Zhao, and H. Sun, “Enhanced millimeter-wave 3-D imaging via complex-valued fully convolutional neural network,” Electronics, vol. 11, no. 1, p. 147, 2022.
  16. Y. Dai, T. Jin, H. Li, Y. Song, and J. Hu, “Imaging enhancement via CNN in MIMO virtual array-based radar,” IEEE Trans. Geosci. Remote Sens., vol. 59, no. 9, pp. 7449–7458, Nov. 2021.
  17. J. Liang, J. Cao, G. Sun, K. Zhang, L. Van Gool, and R. Timofte, “SwinIR: Image restoration using swin transformer,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. Workshop (ICCVW), Montreal, Canada, Oct. 2021, pp. 1833–1844.
  18. B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee, “Enhanced deep residual networks for single image super-resolution,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Honolulu, HI, USA, Jul. 2017, pp. 136–144.
  19. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), Long Beach, CA, USA, Dec. 2017, pp. 5998–6008.
  20. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.
  21. Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer: Hierarchical vision transformer using shifted windows,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Montreal, Canada, Oct. 2021, pp. 10 012–10 022.
  22. M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2: Inverted residuals and linear bottlenecks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Salt Lake City, Utah, USA, Jun. 2018, pp. 4510–4520.
  23. S. Mehta and M. Rastegari, “MobileViT: light-weight, general-purpose, and mobile-friendly vision transformer,” arXiv preprint arXiv:2110.02178, Oct. 2021.
  24. H. Dong, L. Zhang, and B. Zou, “Exploring vision transformers for polarimetric SAR image classification,” IEEE Trans. Geosci. Remote Sens., Nov. 2021.
Citations (10)

Summary

We haven't generated a summary for this paper yet.