Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Approximate Evaluation of Quantitative Second Order Queries (2305.02056v1)

Published 3 May 2023 in cs.CC, cs.DM, cs.DS, and cs.LO

Abstract: Courcelle's theorem and its adaptations to cliquewidth have shaped the field of exact parameterized algorithms and are widely considered the archetype of algorithmic meta-theorems. In the past decade, there has been growing interest in developing parameterized approximation algorithms for problems which are not captured by Courcelle's theorem and, in particular, are considered not fixed-parameter tractable under the associated widths. We develop a generalization of Courcelle's theorem that yields efficient approximation schemes for any problem that can be captured by an expanded logic we call Blocked CMSO, capable of making logical statements about the sizes of set variables via so-called weight comparisons. The logic controls weight comparisons via the quantifier-alternation depth of the involved variables, allowing full comparisons for zero-alternation variables and limited comparisons for one-alternation variables. We show that the developed framework threads the very needle of tractability: on one hand it can describe a broad range of approximable problems, while on the other hand we show that the restrictions of our logic cannot be relaxed under well-established complexity assumptions. The running time of our approximation scheme is polynomial in $1/\varepsilon$, allowing us to fully interpolate between faster approximate algorithms and slower exact algorithms. This provides a unified framework to explain the tractability landscape of graph problems parameterized by treewidth and cliquewidth, as well as classical non-graph problems such as Subset Sum and Knapsack.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.