Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

An FCNN-Based Super-Resolution mmWave Radar Framework for Contactless Musical Instrument Interface (2305.01995v1)

Published 3 May 2023 in eess.SP and cs.MM

Abstract: In this article, we propose a framework for contactless human-computer interaction (HCI) using novel tracking techniques based on deep learning-based super-resolution and tracking algorithms. Our system offers unprecedented high-resolution tracking of hand position and motion characteristics by leveraging spatial and temporal features embedded in the reflected radar waveform. Rather than classifying samples from a predefined set of hand gestures, as common in existing work on deep learning with mmWave radar, our proposed imager employs a regressive full convolutional neural network (FCNN) approach to improve localization accuracy by spatial super-resolution. While the proposed techniques are suitable for a host of tracking applications, this article focuses on their application as a musical interface to demonstrate the robustness of the gesture sensing pipeline and deep learning signal processing chain. The user can control the instrument by varying the position and velocity of their hand above the vertically-facing sensor. By employing a commercially available multiple-input-multiple-output (MIMO) radar rather than a traditional optical sensor, our framework demonstrates the efficacy of the mmWave sensing modality for fine motion tracking and offers an elegant solution to a host of HCI tasks. Additionally, we provide a freely available software package and user interface for controlling the device, streaming the data to MATLAB in real-time, and increasing accessibility to the signal processing and device interface functionality utilized in this article.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.