Upper Bounds on the Acyclic Chromatic Index of Degenerate Graphs (2305.01948v1)
Abstract: An acyclic edge coloring of a graph is a proper edge coloring without any bichromatic cycles. The acyclic chromatic index of a graph $G$ denoted by $a'(G)$, is the minimum $k$ such that $G$ has an acyclic edge coloring with $k$ colors. Fiam\v{c}\'{\i}k conjectured that $a'(G) \le \Delta+2$ for any graph $G$ with maximum degree $\Delta$. A graph $G$ is said to be $k$-degenerate if every subgraph of $G$ has a vertex of degree at most $k$. Basavaraju and Chandran proved that the conjecture is true for $2$-degenerate graphs. We prove that for a $3$-degenerate graph $G$, $a'(G) \le \Delta+5$, thereby bringing the upper bound closer to the conjectured bound. We also consider $k$-degenerate graphs with $k \ge 4$ and give an upper bound for the acyclic chromatic index of the same.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.