Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 116 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 59 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Upper Bounds on the Acyclic Chromatic Index of Degenerate Graphs (2305.01948v1)

Published 3 May 2023 in math.CO and cs.DM

Abstract: An acyclic edge coloring of a graph is a proper edge coloring without any bichromatic cycles. The acyclic chromatic index of a graph $G$ denoted by $a'(G)$, is the minimum $k$ such that $G$ has an acyclic edge coloring with $k$ colors. Fiam\v{c}\'{\i}k conjectured that $a'(G) \le \Delta+2$ for any graph $G$ with maximum degree $\Delta$. A graph $G$ is said to be $k$-degenerate if every subgraph of $G$ has a vertex of degree at most $k$. Basavaraju and Chandran proved that the conjecture is true for $2$-degenerate graphs. We prove that for a $3$-degenerate graph $G$, $a'(G) \le \Delta+5$, thereby bringing the upper bound closer to the conjectured bound. We also consider $k$-degenerate graphs with $k \ge 4$ and give an upper bound for the acyclic chromatic index of the same.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.