Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Fully Automatic Neural Network Reduction for Formal Verification (2305.01932v2)

Published 3 May 2023 in cs.LG

Abstract: Formal verification of neural networks is essential before their deployment in safety-critical applications. However, existing methods for formally verifying neural networks are not yet scalable enough to handle practical problems involving a large number of neurons. We address this challenge by introducing a fully automatic and sound reduction of neural networks using reachability analysis. The soundness ensures that the verification of the reduced network entails the verification of the original network. To the best of our knowledge, we present the first sound reduction approach that is applicable to neural networks with any type of element-wise activation function, such as ReLU, sigmoid, and tanh. The network reduction is computed on the fly while simultaneously verifying the original network and its specifications. All parameters are automatically tuned to minimize the network size without compromising verifiability. We further show the applicability of our approach to convolutional neural networks by explicitly exploiting similar neighboring pixels. Our evaluation shows that our approach can reduce the number of neurons to a fraction of the original number of neurons with minor outer-approximation and thus reduce the verification time to a similar degree.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube