Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Numerical circuit synthesis and compilation for multi-state preparation (2305.01816v3)

Published 2 May 2023 in quant-ph and cs.ET

Abstract: Near-term quantum computers have significant error rates and short coherence times, so compilation of circuits to be as short as possible is essential. Two types of compilation problems are typically considered: circuits to prepare a given state from a fixed input state, called "state preparation"; and circuits to implement a given unitary operation, for example by "unitary synthesis". In this paper we solve a more general problem: the transformation of a set of $m$ states to another set of $m$ states, which we call "multi-state preparation". State preparation and unitary synthesis are special cases; for state preparation, $m=1$, while for unitary synthesis, $m$ is the dimension of the full Hilbert space. We generate and optimize circuits for multi-state preparation numerically. In cases where a top-down approach based on matrix decompositions is also possible, our method finds circuits with substantially (up to 40%) fewer two-qubit gates. We discuss possible applications, including efficient preparation of macroscopic superposition ("cat") states and synthesis of quantum channels.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum, vol. 2, p. 79, Aug. 2018. [Online]. Available: https://doi.org/10.22331/q-2018-08-06-79
  2. “Quantinuum Sets New Record with Highest Ever Quantum Volume”. [Online]. Available: https://www.quantinuum.com/news/quantinuum-sets-new-record-with-highest-ever-quantum-volume
  3. “IONQ Aria: Practical Performance”. [Online]. Available: https://ionq.com/resources/ionq-aria-practical-performance
  4. M. Saffman, I. I. Beterov, A. Dalal, E. J. Páez, and B. C. Sanders, “Symmetric rydberg controlled-z𝑧zitalic_z gates with adiabatic pulses,” Phys. Rev. A, vol. 101, p. 062309, Jun 2020. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.101.062309
  5. I. S. Madjarov, J. P. Covey, A. L. Shaw, J. Choi, A. Kale, A. Cooper, H. Pichler, V. Schkolnik, J. R. Williams, and M. Endres, “High-fidelity entanglement and detection of alkaline-earth rydberg atoms,” Nature Physics, vol. 16, no. 8, pp. 857–861, Aug 2020. [Online]. Available: https://doi.org/10.1038/s41567-020-0903-z
  6. S. J. Evered, D. Bluvstein, M. Kalinowski, S. Ebadi, T. Manovitz, H. Zhou, S. H. Li, A. A. Geim, T. T. Wang, N. Maskara, H. Levine, G. Semeghini, M. Greiner, V. Vuletic, and M. D. Lukin, “High-fidelity parallel entangling gates on a neutral atom quantum computer,” 2023. [Online]. Available: https://arxiv.org/abs/2304.05420
  7. A. R. Mills, C. R. Guinn, M. J. Gullans, A. J. Sigillito, M. M. Feldman, E. Nielsen, and J. R. Petta, “Two-qubit silicon quantum processor with operation fidelity exceeding 99%,” Science Advances, vol. 8, no. 14, p. eabn5130, 2022. [Online]. Available: https://www.science.org/doi/abs/10.1126/sciadv.abn5130
  8. A. Kandala, K. X. Wei, S. Srinivasan, E. Magesan, S. Carnevale, G. A. Keefe, D. Klaus, O. Dial, and D. C. McKay, “Demonstration of a high-fidelity cnot gate for fixed-frequency transmons with engineered z⁢z𝑧𝑧zzitalic_z italic_z suppression,” Phys. Rev. Lett., vol. 127, p. 130501, Sep 2021. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.127.130501
  9. L. B. Nguyen, G. Koolstra, Y. Kim, A. Morvan, T. Chistolini, S. Singh, K. N. Nesterov, C. Jünger, L. Chen, Z. Pedramrazi, B. K. Mitchell, J. M. Kreikebaum, S. Puri, D. I. Santiago, and I. Siddiqi, “Blueprint for a high-performance fluxonium quantum processor,” PRX Quantum, vol. 3, p. 037001, Aug 2022. [Online]. Available: https://link.aps.org/doi/10.1103/PRXQuantum.3.037001
  10. I. N. Moskalenko, I. A. Simakov, N. N. Abramov, A. A. Grigorev, D. O. Moskalev, A. A. Pishchimova, N. S. Smirnov, E. V. Zikiy, I. A. Rodionov, and I. S. Besedin, “High fidelity two-qubit gates on fluxoniums using a tunable coupler,” npj Quantum Information, p. 130, Nov. 2022. [Online]. Available: https://doi.org/10.1038/s41534-022-00644-x
  11. Google Quantum AI, “Suppressing quantum errors by scaling a surface code logical qubit,” Nature, vol. 614, no. 7949, pp. 676–681, Feb 2023. [Online]. Available: https://doi.org/10.1038/s41586-022-05434-1
  12. J. Zhang, J. Vala, S. Sastry, and K. B. Whaley, “Optimal quantum circuit synthesis from controlled-unitary gates,” Phys. Rev. A, vol. 69, p. 042309, Apr 2004. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.69.042309
  13. V. Shende, S. Bullock, and I. Markov, “Synthesis of quantum-logic circuits,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 25, no. 6, pp. 1000–1010, 2006. [Online]. Available: https://ieeexplore.ieee.org/document/1629135
  14. D. Camps and R. Van Beeumen, “Approximate quantum circuit synthesis using block encodings,” Phys. Rev. A, vol. 102, p. 052411, Nov 2020. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.102.052411
  15. M. G. Davis, E. Smith, A. Tudor, K. Sen, I. Siddiqi, and C. Iancu, “Towards optimal topology aware quantum circuit synthesis,” 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), pp. 223–234, 2020. [Online]. Available: https://ieeexplore.ieee.org/document/9259942
  16. E. Younis, K. Sen, K. A. Yelick, and C. Iancu, “Qfast: Conflating search and numerical optimization for scalable quantum circuit synthesis,” 2021 IEEE International Conference on Quantum Computing and Engineering (QCE), pp. 232–243, 2021. [Online]. Available: https://ieeexplore.ieee.org/document/9605287
  17. E. Smith, M. G. Davis, J. Larson, E. Younis, L. B. Oftelie, W. Lavrijsen, and C. Iancu, “Leap: Scaling numerical optimization based synthesis using an incremental approach,” ACM Transactions on Quantum Computing, vol. 4, no. 1, feb 2023. [Online]. Available: https://doi.org/10.1145/3548693
  18. L. Cincio, K. Rudinger, M. Sarovar, and P. J. Coles, “Machine learning of noise-resilient quantum circuits,” PRX Quantum, vol. 2, p. 010324, Feb 2021. [Online]. Available: https://link.aps.org/doi/10.1103/PRXQuantum.2.010324
  19. P. Rakyta and Z. Zimborás, “Efficient quantum gate decomposition via adaptive circuit compression,” 2022. [Online]. Available: https://arxiv.org/abs/2203.04426
  20. E. Younis and C. Iancu, “Quantum circuit optimization and transpilation via parameterized circuit instantiation,” in 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), 2022, pp. 465–475. [Online]. Available: https://ieeexplore.ieee.org/document/9951320
  21. S. Ashhab, N. Yamamoto, F. Yoshihara, and K. Semba, “Numerical analysis of quantum circuits for state preparation and unitary operator synthesis,” Phys. Rev. A, vol. 106, p. 022426, Aug 2022. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.106.022426
  22. X. Sun, G. Tian, S. Yang, P. Yuan, and S. Zhang, “Asymptotically optimal circuit depth for quantum state preparation and general unitary synthesis,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, pp. 1–1, 2023. [Online]. Available: https://ieeexplore.ieee.org/document/10044235
  23. Qiskit contributors, “Qiskit: An open-source framework for quantum computing,” 2023. [Online]. Available: https://doi.org/10.5281/zenodo.2573505
  24. Cirq Developers, “Cirq,” Dec. 2022, See full list of authors on Github: https://github .com/quantumlib/Cirq/graphs/contributors. [Online]. Available: https://doi.org/10.5281/zenodo.7465577
  25. S. Sivarajah, S. Dilkes, A. Cowtan, W. Simmons, A. Edgington, and R. Duncan, “t—ket⟩: a retargetable compiler for nisq devices,” Quantum Science and Technology, vol. 6, no. 1, p. 014003, nov 2020. [Online]. Available: https://dx.doi.org/10.1088/2058-9565/ab8e92
  26. E. Younis, C. C. Iancu, W. Lavrijsen, M. Davis, and E. Smith, “Berkeley quantum synthesis toolkit (bqskit) v1,” 4 2021. [Online]. Available: https://www.osti.gov/biblio/1785933
  27. BQSKit code repository. [Online]. Available: https://github.com/BQSKit/bqskit
  28. W. P. Schleich and M. G. Raymer, “Special issue on quantum state preparation and measurement,” Journal of Modern Optics, vol. 44, no. 11-12, pp. 2021–2022, 1997. [Online]. Available: https://www.tandfonline.com/doi/abs/10.1080/09500349708231863
  29. V. Bergholm, J. J. Vartiainen, M. Möttönen, and M. M. Salomaa, “Quantum circuits with uniformly controlled one-qubit gates,” Phys. Rev. A, vol. 71, p. 052330, May 2005. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.71.052330
  30. M. Plesch and Č. Brukner, “Quantum-state preparation with universal gate decompositions,” Phys. Rev. A, vol. 83, p. 032302, Mar 2011. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.83.032302
  31. I. F. Araujo, D. K. Park, F. Petruccione, and A. J. da Silva, “A divide-and-conquer algorithm for quantum state preparation,” Scientific Reports, vol. 11, no. 1, p. 6329, Mar 2021. [Online]. Available: https://doi.org/10.1038/s41598-021-85474-1
  32. X.-M. Zhang, T. Li, and X. Yuan, “Quantum state preparation with optimal circuit depth: Implementations and applications,” Phys. Rev. Lett., vol. 129, p. 230504, Nov 2022. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.129.230504
  33. E. Knill, “Approximation by quantum circuits,” 1995. [Online]. Available: https://arxiv.org/abs/quant-ph/9508006
  34. R. Iten, R. Colbeck, I. Kukuljan, J. Home, and M. Christandl, “Quantum circuits for isometries,” Phys. Rev. A, vol. 93, p. 032318, Mar 2016. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.93.032318
  35. R. Iten, O. Reardon-Smith, E. Malvetti, L. Mondada, G. Pauvert, E. Redmond, R. S. Kohli, and R. Colbeck, “Introduction to UniversalQCompiler,” 2021. [Online]. Available: https://arxiv.org/abs/1904.01072
  36. P. Yuan and S. Zhang, “Optimal (controlled) quantum state preparation and improved unitary synthesis by quantum circuits with any number of ancillary qubits,” Quantum, vol. 7, p. 956, Mar. 2023. [Online]. Available: https://doi.org/10.22331/q-2023-03-20-956
  37. G. Vidal and C. M. Dawson, “Universal quantum circuit for two-qubit transformations with three controlled-not gates,” Phys. Rev. A, vol. 69, p. 010301, Jan 2004. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.69.010301
  38. F. Vatan and C. Williams, “Optimal quantum circuits for general two-qubit gates,” Phys. Rev. A, vol. 69, p. 032315, Mar 2004. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.69.032315
  39. M. Žnidarič, O. Giraud, and B. Georgeot, “Optimal number of controlled-not gates to generate a three-qubit state,” Phys. Rev. A, vol. 77, p. 032320, Mar 2008. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.77.032320
  40. copper.hat (https://math.stackexchange.com/users/27978/copper hat), “Unitary map between sets of vectors,” Mathematics Stack Exchange, uRL:https://math.stackexchange.com/q/583653 (version: 2013-11-27). [Online]. Available: https://math.stackexchange.com/q/583653
  41. M. Weiden, J. Kalloor, J. Kubiatowicz, E. Younis, and C. Iancu, “Wide quantum circuit optimization with topology aware synthesis,” in 2022 IEEE/ACM Third International Workshop on Quantum Computing Software (QCS), 2022, pp. 1–11. [Online]. Available: https://ieeexplore.ieee.org/document/10025533
  42. D. A. Roberts and B. Yoshida, “Chaos and complexity by design,” Journal of High Energy Physics, vol. 2017, p. 121, Apr 2017. [Online]. Available: https://doi.org/10.1007/JHEP04(2017)121
  43. L. Wossnig, Z. Zhao, and A. Prakash, “Quantum linear system algorithm for dense matrices,” Phys. Rev. Lett., vol. 120, p. 050502, Jan 2018. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.120.050502
  44. I. Kerenidis, J. Landman, A. Luongo, and A. Prakash, “q-means: A quantum algorithm for unsupervised machine learning,” in Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32.   Curran Associates, Inc., 2019. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2019/file/16026d60ff9b54410b3435b403afd226-Paper.pdf
  45. H. J. Briegel and R. Raussendorf, “Persistent entanglement in arrays of interacting particles,” Phys. Rev. Lett., vol. 86, pp. 910–913, Jan 2001. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.86.910
  46. K. Klymko, C. Mejuto-Zaera, S. J. Cotton, F. Wudarski, M. Urbanek, D. Hait, M. Head-Gordon, K. B. Whaley, J. Moussa, N. Wiebe, W. A. de Jong, and N. M. Tubman, “Real-time evolution for ultracompact hamiltonian eigenstates on quantum hardware,” PRX Quantum, vol. 3, p. 020323, May 2022. [Online]. Available: https://link.aps.org/doi/10.1103/PRXQuantum.3.020323
  47. C. L. Cortes and S. K. Gray, “Quantum krylov subspace algorithms for ground- and excited-state energy estimation,” Phys. Rev. A, vol. 105, p. 022417, Feb 2022. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.105.022417
  48. W. F. Stinespring, “Positive functions on c*-algebras,” Proceedings of the American Mathematical Society, vol. 6, no. 2, pp. 211–216, 1955. [Online]. Available: http://www.jstor.org/stable/2032342
  49. L. Del Re, B. Rost, A. F. Kemper, and J. K. Freericks, “Driven-dissipative quantum mechanics on a lattice: Simulating a fermionic reservoir on a quantum computer,” Phys. Rev. B, vol. 102, p. 125112, Sep 2020. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.102.125112
  50. Z. Hu, R. Xia, and S. Kais, “A quantum algorithm for evolving open quantum dynamics on quantum computing devices,” Scientific Reports, vol. 10, no. 1, p. 3301, Feb 2020. [Online]. Available: https://doi.org/10.1038/s41598-020-60321-x
Citations (5)

Summary

We haven't generated a summary for this paper yet.