Numerical circuit synthesis and compilation for multi-state preparation (2305.01816v3)
Abstract: Near-term quantum computers have significant error rates and short coherence times, so compilation of circuits to be as short as possible is essential. Two types of compilation problems are typically considered: circuits to prepare a given state from a fixed input state, called "state preparation"; and circuits to implement a given unitary operation, for example by "unitary synthesis". In this paper we solve a more general problem: the transformation of a set of $m$ states to another set of $m$ states, which we call "multi-state preparation". State preparation and unitary synthesis are special cases; for state preparation, $m=1$, while for unitary synthesis, $m$ is the dimension of the full Hilbert space. We generate and optimize circuits for multi-state preparation numerically. In cases where a top-down approach based on matrix decompositions is also possible, our method finds circuits with substantially (up to 40%) fewer two-qubit gates. We discuss possible applications, including efficient preparation of macroscopic superposition ("cat") states and synthesis of quantum channels.
- J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum, vol. 2, p. 79, Aug. 2018. [Online]. Available: https://doi.org/10.22331/q-2018-08-06-79
- “Quantinuum Sets New Record with Highest Ever Quantum Volume”. [Online]. Available: https://www.quantinuum.com/news/quantinuum-sets-new-record-with-highest-ever-quantum-volume
- “IONQ Aria: Practical Performance”. [Online]. Available: https://ionq.com/resources/ionq-aria-practical-performance
- M. Saffman, I. I. Beterov, A. Dalal, E. J. Páez, and B. C. Sanders, “Symmetric rydberg controlled-z𝑧zitalic_z gates with adiabatic pulses,” Phys. Rev. A, vol. 101, p. 062309, Jun 2020. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.101.062309
- I. S. Madjarov, J. P. Covey, A. L. Shaw, J. Choi, A. Kale, A. Cooper, H. Pichler, V. Schkolnik, J. R. Williams, and M. Endres, “High-fidelity entanglement and detection of alkaline-earth rydberg atoms,” Nature Physics, vol. 16, no. 8, pp. 857–861, Aug 2020. [Online]. Available: https://doi.org/10.1038/s41567-020-0903-z
- S. J. Evered, D. Bluvstein, M. Kalinowski, S. Ebadi, T. Manovitz, H. Zhou, S. H. Li, A. A. Geim, T. T. Wang, N. Maskara, H. Levine, G. Semeghini, M. Greiner, V. Vuletic, and M. D. Lukin, “High-fidelity parallel entangling gates on a neutral atom quantum computer,” 2023. [Online]. Available: https://arxiv.org/abs/2304.05420
- A. R. Mills, C. R. Guinn, M. J. Gullans, A. J. Sigillito, M. M. Feldman, E. Nielsen, and J. R. Petta, “Two-qubit silicon quantum processor with operation fidelity exceeding 99%,” Science Advances, vol. 8, no. 14, p. eabn5130, 2022. [Online]. Available: https://www.science.org/doi/abs/10.1126/sciadv.abn5130
- A. Kandala, K. X. Wei, S. Srinivasan, E. Magesan, S. Carnevale, G. A. Keefe, D. Klaus, O. Dial, and D. C. McKay, “Demonstration of a high-fidelity cnot gate for fixed-frequency transmons with engineered zz𝑧𝑧zzitalic_z italic_z suppression,” Phys. Rev. Lett., vol. 127, p. 130501, Sep 2021. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.127.130501
- L. B. Nguyen, G. Koolstra, Y. Kim, A. Morvan, T. Chistolini, S. Singh, K. N. Nesterov, C. Jünger, L. Chen, Z. Pedramrazi, B. K. Mitchell, J. M. Kreikebaum, S. Puri, D. I. Santiago, and I. Siddiqi, “Blueprint for a high-performance fluxonium quantum processor,” PRX Quantum, vol. 3, p. 037001, Aug 2022. [Online]. Available: https://link.aps.org/doi/10.1103/PRXQuantum.3.037001
- I. N. Moskalenko, I. A. Simakov, N. N. Abramov, A. A. Grigorev, D. O. Moskalev, A. A. Pishchimova, N. S. Smirnov, E. V. Zikiy, I. A. Rodionov, and I. S. Besedin, “High fidelity two-qubit gates on fluxoniums using a tunable coupler,” npj Quantum Information, p. 130, Nov. 2022. [Online]. Available: https://doi.org/10.1038/s41534-022-00644-x
- Google Quantum AI, “Suppressing quantum errors by scaling a surface code logical qubit,” Nature, vol. 614, no. 7949, pp. 676–681, Feb 2023. [Online]. Available: https://doi.org/10.1038/s41586-022-05434-1
- J. Zhang, J. Vala, S. Sastry, and K. B. Whaley, “Optimal quantum circuit synthesis from controlled-unitary gates,” Phys. Rev. A, vol. 69, p. 042309, Apr 2004. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.69.042309
- V. Shende, S. Bullock, and I. Markov, “Synthesis of quantum-logic circuits,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 25, no. 6, pp. 1000–1010, 2006. [Online]. Available: https://ieeexplore.ieee.org/document/1629135
- D. Camps and R. Van Beeumen, “Approximate quantum circuit synthesis using block encodings,” Phys. Rev. A, vol. 102, p. 052411, Nov 2020. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.102.052411
- M. G. Davis, E. Smith, A. Tudor, K. Sen, I. Siddiqi, and C. Iancu, “Towards optimal topology aware quantum circuit synthesis,” 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), pp. 223–234, 2020. [Online]. Available: https://ieeexplore.ieee.org/document/9259942
- E. Younis, K. Sen, K. A. Yelick, and C. Iancu, “Qfast: Conflating search and numerical optimization for scalable quantum circuit synthesis,” 2021 IEEE International Conference on Quantum Computing and Engineering (QCE), pp. 232–243, 2021. [Online]. Available: https://ieeexplore.ieee.org/document/9605287
- E. Smith, M. G. Davis, J. Larson, E. Younis, L. B. Oftelie, W. Lavrijsen, and C. Iancu, “Leap: Scaling numerical optimization based synthesis using an incremental approach,” ACM Transactions on Quantum Computing, vol. 4, no. 1, feb 2023. [Online]. Available: https://doi.org/10.1145/3548693
- L. Cincio, K. Rudinger, M. Sarovar, and P. J. Coles, “Machine learning of noise-resilient quantum circuits,” PRX Quantum, vol. 2, p. 010324, Feb 2021. [Online]. Available: https://link.aps.org/doi/10.1103/PRXQuantum.2.010324
- P. Rakyta and Z. Zimborás, “Efficient quantum gate decomposition via adaptive circuit compression,” 2022. [Online]. Available: https://arxiv.org/abs/2203.04426
- E. Younis and C. Iancu, “Quantum circuit optimization and transpilation via parameterized circuit instantiation,” in 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), 2022, pp. 465–475. [Online]. Available: https://ieeexplore.ieee.org/document/9951320
- S. Ashhab, N. Yamamoto, F. Yoshihara, and K. Semba, “Numerical analysis of quantum circuits for state preparation and unitary operator synthesis,” Phys. Rev. A, vol. 106, p. 022426, Aug 2022. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.106.022426
- X. Sun, G. Tian, S. Yang, P. Yuan, and S. Zhang, “Asymptotically optimal circuit depth for quantum state preparation and general unitary synthesis,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, pp. 1–1, 2023. [Online]. Available: https://ieeexplore.ieee.org/document/10044235
- Qiskit contributors, “Qiskit: An open-source framework for quantum computing,” 2023. [Online]. Available: https://doi.org/10.5281/zenodo.2573505
- Cirq Developers, “Cirq,” Dec. 2022, See full list of authors on Github: https://github .com/quantumlib/Cirq/graphs/contributors. [Online]. Available: https://doi.org/10.5281/zenodo.7465577
- S. Sivarajah, S. Dilkes, A. Cowtan, W. Simmons, A. Edgington, and R. Duncan, “t—ket⟩: a retargetable compiler for nisq devices,” Quantum Science and Technology, vol. 6, no. 1, p. 014003, nov 2020. [Online]. Available: https://dx.doi.org/10.1088/2058-9565/ab8e92
- E. Younis, C. C. Iancu, W. Lavrijsen, M. Davis, and E. Smith, “Berkeley quantum synthesis toolkit (bqskit) v1,” 4 2021. [Online]. Available: https://www.osti.gov/biblio/1785933
- BQSKit code repository. [Online]. Available: https://github.com/BQSKit/bqskit
- W. P. Schleich and M. G. Raymer, “Special issue on quantum state preparation and measurement,” Journal of Modern Optics, vol. 44, no. 11-12, pp. 2021–2022, 1997. [Online]. Available: https://www.tandfonline.com/doi/abs/10.1080/09500349708231863
- V. Bergholm, J. J. Vartiainen, M. Möttönen, and M. M. Salomaa, “Quantum circuits with uniformly controlled one-qubit gates,” Phys. Rev. A, vol. 71, p. 052330, May 2005. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.71.052330
- M. Plesch and Č. Brukner, “Quantum-state preparation with universal gate decompositions,” Phys. Rev. A, vol. 83, p. 032302, Mar 2011. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.83.032302
- I. F. Araujo, D. K. Park, F. Petruccione, and A. J. da Silva, “A divide-and-conquer algorithm for quantum state preparation,” Scientific Reports, vol. 11, no. 1, p. 6329, Mar 2021. [Online]. Available: https://doi.org/10.1038/s41598-021-85474-1
- X.-M. Zhang, T. Li, and X. Yuan, “Quantum state preparation with optimal circuit depth: Implementations and applications,” Phys. Rev. Lett., vol. 129, p. 230504, Nov 2022. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.129.230504
- E. Knill, “Approximation by quantum circuits,” 1995. [Online]. Available: https://arxiv.org/abs/quant-ph/9508006
- R. Iten, R. Colbeck, I. Kukuljan, J. Home, and M. Christandl, “Quantum circuits for isometries,” Phys. Rev. A, vol. 93, p. 032318, Mar 2016. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.93.032318
- R. Iten, O. Reardon-Smith, E. Malvetti, L. Mondada, G. Pauvert, E. Redmond, R. S. Kohli, and R. Colbeck, “Introduction to UniversalQCompiler,” 2021. [Online]. Available: https://arxiv.org/abs/1904.01072
- P. Yuan and S. Zhang, “Optimal (controlled) quantum state preparation and improved unitary synthesis by quantum circuits with any number of ancillary qubits,” Quantum, vol. 7, p. 956, Mar. 2023. [Online]. Available: https://doi.org/10.22331/q-2023-03-20-956
- G. Vidal and C. M. Dawson, “Universal quantum circuit for two-qubit transformations with three controlled-not gates,” Phys. Rev. A, vol. 69, p. 010301, Jan 2004. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.69.010301
- F. Vatan and C. Williams, “Optimal quantum circuits for general two-qubit gates,” Phys. Rev. A, vol. 69, p. 032315, Mar 2004. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.69.032315
- M. Žnidarič, O. Giraud, and B. Georgeot, “Optimal number of controlled-not gates to generate a three-qubit state,” Phys. Rev. A, vol. 77, p. 032320, Mar 2008. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.77.032320
- copper.hat (https://math.stackexchange.com/users/27978/copper hat), “Unitary map between sets of vectors,” Mathematics Stack Exchange, uRL:https://math.stackexchange.com/q/583653 (version: 2013-11-27). [Online]. Available: https://math.stackexchange.com/q/583653
- M. Weiden, J. Kalloor, J. Kubiatowicz, E. Younis, and C. Iancu, “Wide quantum circuit optimization with topology aware synthesis,” in 2022 IEEE/ACM Third International Workshop on Quantum Computing Software (QCS), 2022, pp. 1–11. [Online]. Available: https://ieeexplore.ieee.org/document/10025533
- D. A. Roberts and B. Yoshida, “Chaos and complexity by design,” Journal of High Energy Physics, vol. 2017, p. 121, Apr 2017. [Online]. Available: https://doi.org/10.1007/JHEP04(2017)121
- L. Wossnig, Z. Zhao, and A. Prakash, “Quantum linear system algorithm for dense matrices,” Phys. Rev. Lett., vol. 120, p. 050502, Jan 2018. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.120.050502
- I. Kerenidis, J. Landman, A. Luongo, and A. Prakash, “q-means: A quantum algorithm for unsupervised machine learning,” in Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32. Curran Associates, Inc., 2019. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2019/file/16026d60ff9b54410b3435b403afd226-Paper.pdf
- H. J. Briegel and R. Raussendorf, “Persistent entanglement in arrays of interacting particles,” Phys. Rev. Lett., vol. 86, pp. 910–913, Jan 2001. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.86.910
- K. Klymko, C. Mejuto-Zaera, S. J. Cotton, F. Wudarski, M. Urbanek, D. Hait, M. Head-Gordon, K. B. Whaley, J. Moussa, N. Wiebe, W. A. de Jong, and N. M. Tubman, “Real-time evolution for ultracompact hamiltonian eigenstates on quantum hardware,” PRX Quantum, vol. 3, p. 020323, May 2022. [Online]. Available: https://link.aps.org/doi/10.1103/PRXQuantum.3.020323
- C. L. Cortes and S. K. Gray, “Quantum krylov subspace algorithms for ground- and excited-state energy estimation,” Phys. Rev. A, vol. 105, p. 022417, Feb 2022. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.105.022417
- W. F. Stinespring, “Positive functions on c*-algebras,” Proceedings of the American Mathematical Society, vol. 6, no. 2, pp. 211–216, 1955. [Online]. Available: http://www.jstor.org/stable/2032342
- L. Del Re, B. Rost, A. F. Kemper, and J. K. Freericks, “Driven-dissipative quantum mechanics on a lattice: Simulating a fermionic reservoir on a quantum computer,” Phys. Rev. B, vol. 102, p. 125112, Sep 2020. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.102.125112
- Z. Hu, R. Xia, and S. Kais, “A quantum algorithm for evolving open quantum dynamics on quantum computing devices,” Scientific Reports, vol. 10, no. 1, p. 3301, Feb 2020. [Online]. Available: https://doi.org/10.1038/s41598-020-60321-x