Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Towards Unified AI Drug Discovery with Multiple Knowledge Modalities (2305.01523v2)

Published 17 Apr 2023 in cs.LG, cs.AI, and cs.CE

Abstract: In recent years, AI models that mine intrinsic patterns from molecular structures and protein sequences have shown promise in accelerating drug discovery. However, these methods partly lag behind real-world pharmaceutical approaches of human experts that additionally grasp structured knowledge from knowledge bases and unstructured knowledge from biomedical literature. To bridge this gap, we propose KEDD, a unified, end-to-end, and multimodal deep learning framework that optimally incorporates both structured and unstructured knowledge for vast AI drug discovery tasks. The framework first extracts underlying characteristics from heterogeneous inputs, and then applies multimodal fusion for accurate prediction. To mitigate the problem of missing modalities, we leverage multi-head sparse attention and a modality masking mechanism to extract relevant information robustly. Benefiting from integrated knowledge, our framework achieves a deeper understanding of molecule entities, brings significant improvements over state-of-the-art methods on a wide range of tasks and benchmarks, and reveals its promising potential in assisting real-world drug discovery.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.