Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

FPT Approximations for Capacitated/Fair Clustering with Outliers (2305.01471v1)

Published 2 May 2023 in cs.DS

Abstract: Clustering problems such as $k$-Median, and $k$-Means, are motivated from applications such as location planning, unsupervised learning among others. In such applications, it is important to find the clustering of points that is not ``skewed'' in terms of the number of points, i.e., no cluster should contain too many points. This is modeled by capacity constraints on the sizes of clusters. In an orthogonal direction, another important consideration in clustering is how to handle the presence of outliers in the data. Indeed, these clustering problems have been generalized in the literature to separately handle capacity constraints and outliers. To the best of our knowledge, there has been very little work on studying the approximability of clustering problems that can simultaneously handle both capacities and outliers. We initiate the study of the Capacitated $k$-Median with Outliers (C$k$MO) problem. Here, we want to cluster all except $m$ outlier points into at most $k$ clusters, such that (i) the clusters respect the capacity constraints, and (ii) the cost of clustering, defined as the sum of distances of each non-outlier point to its assigned cluster-center, is minimized. We design the first constant-factor approximation algorithms for C$k$MO. In particular, our algorithm returns a (3+\epsilon)-approximation for C$k$MO in general metric spaces, and a (1+\epsilon)-approximation in Euclidean spaces of constant dimension, that runs in time in time $f(k, m, \epsilon) \cdot |I_m|{O(1)}$, where $|I_m|$ denotes the input size. We can also extend these results to a broader class of problems, including Capacitated k-Means/k-Facility Location with Outliers, and Size-Balanced Fair Clustering problems with Outliers. For each of these problems, we obtain an approximation ratio that matches the best known guarantee of the corresponding outlier-free problem.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.