Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mixed-Integer Optimal Control via Reinforcement Learning: A Case Study on Hybrid Electric Vehicle Energy Management (2305.01461v3)

Published 2 May 2023 in eess.SY, cs.AI, and cs.SY

Abstract: Many optimal control problems require the simultaneous output of discrete and continuous control variables. These problems are usually formulated as mixed-integer optimal control (MIOC) problems, which are challenging to solve due to the complexity of the solution space. Numerical methods such as branch-and-bound are computationally expensive and undesirable for real-time control. This paper proposes a novel hybrid-action reinforcement learning (HARL) algorithm, twin delayed deep deterministic actor-Q (TD3AQ), for MIOC problems. TD3AQ combines the advantages of both actor-critic and Q-learning methods, and can handle the discrete and continuous action spaces simultaneously. The proposed algorithm is evaluated on a plug-in hybrid electric vehicle (PHEV) energy management problem, where real-time control of the discrete variables, clutch engagement/disengagement and gear shift, and continuous variable, engine torque, is essential to maximize fuel economy while satisfying driving constraints. Simulation outcomes demonstrate that TD3AQ achieves control results close to optimality when compared with dynamic programming (DP), with just 4.69% difference. Furthermore, it surpasses the performance of baseline reinforcement learning algorithms.

Summary

We haven't generated a summary for this paper yet.