Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Towards a better labeling process for network security datasets (2305.01337v1)

Published 2 May 2023 in cs.CR

Abstract: Most network security datasets do not have comprehensive label assignment criteria, hindering the evaluation of the datasets, the training of models, the results obtained, the comparison with other methods, and the evaluation in real-life scenarios. There is no labeling ontology nor tools to help assign the labels, resulting in most analyzed datasets assigning labels in files or directory names. This paper addresses the problem of having a better labeling process by (i) reviewing the needs of stakeholders of the datasets, from creators to model users, (ii) presenting a new ontology of label assignment, (iii) presenting a new tool for assigning structured labels for Zeek network flows based on the ontology, and (iv) studying the differences between generating labels and consuming labels in real-life scenarios. We conclude that a process for structured label assignment is paramount for advancing research in network security and that the new ontology-based label assignation rules should be published as an artifact of every dataset.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.