Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

The Complexity of Distributed Approximation of Packing and Covering Integer Linear Programs (2305.01324v2)

Published 2 May 2023 in cs.DS and cs.DC

Abstract: In this paper, we present a low-diameter decomposition algorithm in the LOCAL model of distributed computing that succeeds with probability $1 - 1/poly(n)$. Specifically, we show how to compute an $\left(\epsilon, O\left(\frac{\log n}{\epsilon}\right)\right)$ low-diameter decomposition in $O\left(\frac{\log3(1/\epsilon)\log n}{\epsilon}\right)$ round Further developing our techniques, we show new distributed algorithms for approximating general packing and covering integer linear programs in the LOCAL model. For packing problems, our algorithm finds an $(1-\epsilon)$-approximate solution in $O\left(\frac{\log3 (1/\epsilon) \log n}{\epsilon}\right)$ rounds with probability $1 - 1/poly(n)$. For covering problems, our algorithm finds an $(1+\epsilon)$-approximate solution in $O\left(\frac{\left(\log \log n + \log (1/\epsilon)\right)3 \log n}{\epsilon}\right)$ rounds with probability $1 - 1/poly(n)$. These results improve upon the previous $O\left(\frac{\log3 n}{\epsilon}\right)$-round algorithm by Ghaffari, Kuhn, and Maus [STOC 2017] which is based on network decompositions. Our algorithms are near-optimal for many fundamental combinatorial graph optimization problems in the LOCAL model, such as minimum vertex cover and minimum dominating set, as their $(1\pm \epsilon)$-approximate solutions require $\Omega\left(\frac{\log n}{\epsilon}\right)$ rounds to compute.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)