Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Anatomy of High-Performance GEMM with Online Fault Tolerance on GPUs (2305.01024v1)

Published 1 May 2023 in cs.DC and cs.PF

Abstract: General Matrix Multiplication (GEMM) is a crucial algorithm for various applications such as machine learning and scientific computing, and an efficient GEMM implementation is essential for the performance of these systems. While researchers often strive for faster performance by using large compute platforms, the increased scale of these systems can raise concerns about hardware and software reliability. In this paper, we present a design for a high-performance GEMM with algorithm-based fault tolerance for use on GPUs. We describe fault-tolerant designs for GEMM at the thread, warp, and threadblock levels, and also provide a baseline GEMM implementation that is competitive with or faster than the state-of-the-art, proprietary cuBLAS GEMM. We present a kernel fusion strategy to overlap and mitigate the memory latency due to fault tolerance with the original GEMM computation. To support a wide range of input matrix shapes and reduce development costs, we present a template-based approach for automatic code generation for both fault-tolerant and non-fault-tolerant GEMM implementations. We evaluate our work on NVIDIA Tesla T4 and A100 server GPUs. Experimental results demonstrate that our baseline GEMM presents comparable or superior performance compared to the closed-source cuBLAS. The fault-tolerant GEMM incurs only a minimal overhead (8.89\% on average) compared to cuBLAS even with hundreds of errors injected per minute. For irregularly shaped inputs, the code generator-generated kernels show remarkable speedups of $160\% \sim 183.5\%$ and $148.55\% \sim 165.12\%$ for fault-tolerant and non-fault-tolerant GEMMs, outperforming cuBLAS by up to $41.40\%$.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube