Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Evaluating statistical language models as pragmatic reasoners (2305.01020v1)

Published 1 May 2023 in cs.CL and cs.AI

Abstract: The relationship between communicated language and intended meaning is often probabilistic and sensitive to context. Numerous strategies attempt to estimate such a mapping, often leveraging recursive Bayesian models of communication. In parallel, LLMs have been increasingly applied to semantic parsing applications, tasked with inferring logical representations from natural language. While existing LLM explorations have been largely restricted to literal language use, in this work, we evaluate the capacity of LLMs to infer the meanings of pragmatic utterances. Specifically, we explore the case of threshold estimation on the gradable adjective ``strong'', contextually conditioned on a strength prior, then extended to composition with qualification, negation, polarity inversion, and class comparison. We find that LLMs can derive context-grounded, human-like distributions over the interpretations of several complex pragmatic utterances, yet struggle composing with negation. These results inform the inferential capacity of statistical LLMs, and their use in pragmatic and semantic parsing applications. All corresponding code is made publicly available (https://github.com/benlipkin/probsem/tree/CogSci2023).

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com