Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Montsalvat: Intel SGX Shielding for GraalVM Native Images (2305.00766v2)

Published 1 May 2023 in cs.CR

Abstract: The popularity of the Java programming language has led to its wide adoption in cloud computing infrastructures. However, Java applications running in untrusted clouds are vulnerable to various forms of privileged attacks. The emergence of trusted execution environments (TEEs) such as Intel SGX mitigates this problem. TEEs protect code and data in secure enclaves inaccessible to untrusted software, including the kernel and hypervisors. To efficiently use TEEs, developers must manually partition their applications into trusted and untrusted parts, in order to reduce the size of the trusted computing base (TCB) and minimise the risks of security vulnerabilities. However, partitioning applications poses two important challenges: (i) ensuring efficient object communication between the partitioned components, and (ii) ensuring the consistency of garbage collection between the parts, especially with memory-managed languages such as Java. We present Montsalvat, a tool which provides a practical and intuitive annotation-based partitioning approach for Java applications destined for secure enclaves. Montsalvat provides an RMI-like mechanism to ensure inter-object communication, as well as consistent garbage collection across the partitioned components. We implement Montsalvat with GraalVM native-image, a tool for compiling Java applications ahead-of-time into standalone native executables that do not require a JVM at runtime. Our extensive evaluation with micro- and macro-benchmarks shows our partitioning approach to boost performance in real-world applications

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube