Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Multi-Fidelity Data-Driven Design and Analysis of Reactor and Tube Simulations (2305.00710v3)

Published 1 May 2023 in cs.CE and math.OC

Abstract: The development of new manufacturing techniques such as 3D printing have enabled the creation of previously infeasible chemical reactor designs. Systematically optimizing the highly parameterized geometries involved in these new classes of reactor is vital to ensure enhanced mixing characteristics and feasible manufacturability. Here we present a framework to rapidly solve this nonlinear, computationally expensive, and derivative-free problem, enabling the fast prototype of novel reactor parameterizations. We take advantage of Gaussian processes to adaptively learn a multi-fidelity model of reactor simulations across a number of different continuous mesh fidelities. The search space of reactor geometries is explored through an amalgam of different, potentially lower, fidelity simulations which are chosen for evaluation based on weighted acquisition function, trading off information gain with cost of simulation. Within our framework we derive a novel criteria for monitoring the progress and dictating the termination of multi-fidelity Bayesian optimization, ensuring a high fidelity solution is returned before experimental budget is exhausted. The class of reactor we investigate are helical-tube reactors under pulsed-flow conditions, which have demonstrated outstanding mixing characteristics, have the potential to be highly parameterized, and are easily manufactured using 3D printing. To validate our results, we 3D print and experimentally validate the optimal reactor geometry, confirming its mixing performance. In doing so we demonstrate our design framework to be extensible to a broad variety of expensive simulation-based optimization problems, supporting the design of the next generation of highly parameterized chemical reactors.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.