Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Efficient dynamic model based testing using greedy test case selection (2305.00705v1)

Published 1 May 2023 in cs.SE and cs.DS

Abstract: Model-based testing (MBT) provides an automated approach for finding discrepancies between software models and their implementation. If we want to incorporate MBT into the fast and iterative software development process that is Continuous Integration Continuous Deployment, then MBT must be able to test the entire model in as little time as possible. However, current academic MBT tools either traverse models at random, which we show to be ineffective for this purpose, or use precalculated optimal paths which can not be efficiently calculated for large industrial models. We provide a new traversal strategy that provides an improvement in error-detection rate comparable to using recalculated paths. We show that the new strategy is able to be applied efficiently to large models. The benchmarks are performed on a mix of real-world and pseudo-randomly generated models. We observe no significant difference between these two types of models.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.