Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Joint tone mapping and denoising of thermal infrared images via multi-scale Retinex and multi-task learning (2305.00691v1)

Published 1 May 2023 in cs.CV

Abstract: Cameras digitize real-world scenes as pixel intensity values with a limited value range given by the available bits per pixel (bpp). High Dynamic Range (HDR) cameras capture those luminance values in higher resolution through an increase in the number of bpp. Most displays, however, are limited to 8 bpp. Naive HDR compression methods lead to a loss of the rich information contained in those HDR images. In this paper, tone mapping algorithms for thermal infrared images with 16 bpp are investigated that can preserve this information. An optimized multi-scale Retinex algorithm sets the baseline. This algorithm is then approximated with a deep learning approach based on the popular U-Net architecture. The remaining noise in the images after tone mapping is reduced implicitly by utilizing a self-supervised deep learning approach that can be jointly trained with the tone mapping approach in a multi-task learning scheme. Further discussions are provided on denoising and deflickering for thermal infrared video enhancement in the context of tone mapping. Extensive experiments on the public FLIR ADAS Dataset prove the effectiveness of our proposed method in comparison with the state-of-the-art.

Citations (3)

Summary

We haven't generated a summary for this paper yet.