Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

SoK: Pragmatic Assessment of Machine Learning for Network Intrusion Detection (2305.00550v1)

Published 30 Apr 2023 in cs.CR, cs.LG, and cs.NI

Abstract: Machine Learning (ML) has become a valuable asset to solve many real-world tasks. For Network Intrusion Detection (NID), however, scientific advances in ML are still seen with skepticism by practitioners. This disconnection is due to the intrinsically limited scope of research papers, many of which primarily aim to demonstrate new methods ``outperforming'' prior work -- oftentimes overlooking the practical implications for deploying the proposed solutions in real systems. Unfortunately, the value of ML for NID depends on a plethora of factors, such as hardware, that are often neglected in scientific literature. This paper aims to reduce the practitioners' skepticism towards ML for NID by "changing" the evaluation methodology adopted in research. After elucidating which "factors" influence the operational deployment of ML in NID, we propose the notion of "pragmatic assessment", which enable practitioners to gauge the real value of ML methods for NID. Then, we show that the state-of-research hardly allows one to estimate the value of ML for NID. As a constructive step forward, we carry out a pragmatic assessment. We re-assess existing ML methods for NID, focusing on the classification of malicious network traffic, and consider: hundreds of configuration settings; diverse adversarial scenarios; and four hardware platforms. Our large and reproducible evaluations enable estimating the quality of ML for NID. We also validate our claims through a user-study with security practitioners.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.