Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimized Machine Learning for CHD Detection using 3D CNN-based Segmentation, Transfer Learning and Adagrad Optimization (2305.00411v1)

Published 30 Apr 2023 in cs.CV and cs.AI

Abstract: Globally, Coronary Heart Disease (CHD) is one of the main causes of death. Early detection of CHD can improve patient outcomes and reduce mortality rates. We propose a novel framework for predicting the presence of CHD using a combination of machine learning and image processing techniques. The framework comprises various phases, including analyzing the data, feature selection using ReliefF, 3D CNN-based segmentation, feature extraction by means of transfer learning, feature fusion as well as classification, and Adagrad optimization. The first step of the proposed framework involves analyzing the data to identify patterns and correlations that may be indicative of CHD. Next, ReliefF feature selection is applied to decide on the most relevant features from the sample images. The 3D CNN-based segmentation technique is then used to segment the optic disc and macula, which are important regions for CHD diagnosis. Feature extraction using transfer learning is performed to extract features from the segmented regions of interest. The extracted features are then fused using a feature fusion technique, and a classifier is trained to predict the presence of CHD. Finally, Adagrad optimization is used to optimize the performance of the classifier. Our framework is evaluated on a dataset of sample images collected from patients with and without CHD. The results show that the anticipated framework accomplishes elevated accuracy in predicting the presence of CHD. either a particular user with a reasonable degree of accuracy compared to the previously employed classifiers like SVM, etc.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. R. Selvaraj (1 paper)
  2. T. Satheesh (1 paper)
  3. V. Suresh (16 papers)
  4. V. Yathavaraj (1 paper)
Citations (1)

Summary

We haven't generated a summary for this paper yet.