Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Critical Scenario Generation for Developing Trustworthy Autonomy (2305.00339v1)

Published 29 Apr 2023 in cs.RO

Abstract: Autonomous systems, such as self-driving vehicles, quadrupeds, and robot manipulators, are largely enabled by the rapid development of artificial intelligence. However, such systems involve several trustworthy challenges such as safety, robustness, and generalization, due to their deployment in open-ended and real-time environments. To evaluate and improve trustworthiness, simulations or so-called digital twins are largely utilized for system development with low cost and high efficiency. One important thing in virtual simulations is scenarios that consist of static and dynamic objects, specific tasks, and evaluation metrics. However, designing diverse, realistic, and effective scenarios is still a challenging problem. One straightforward way is creating scenarios through human design, which is time-consuming and limited by the experience of experts. Another method commonly used in self-driving areas is log replay. This method collects scenario data in the real world and then replays it in simulations or adds random perturbations. Although the replay scenarios are realistic, most of the collected scenarios are redundant since they are all ordinary scenarios that only consider a small portion of critical cases. The desired scenarios should cover all cases in the real world, especially rare but critical events with extremely low probability. Critical scenarios are rare but important to test autonomous systems under risky conditions and unpredictable perturbations, which reveal their trustworthiness.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube