Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Fusion for Visual-Infrared Person ReID in Real-World Surveillance Using Corrupted Multimodal Data (2305.00320v1)

Published 29 Apr 2023 in cs.CV, cs.AI, and cs.LG

Abstract: Visible-infrared person re-identification (V-I ReID) seeks to match images of individuals captured over a distributed network of RGB and IR cameras. The task is challenging due to the significant differences between V and I modalities, especially under real-world conditions, where images are corrupted by, e.g, blur, noise, and weather. Indeed, state-of-art V-I ReID models cannot leverage corrupted modality information to sustain a high level of accuracy. In this paper, we propose an efficient model for multimodal V-I ReID -- named Multimodal Middle Stream Fusion (MMSF) -- that preserves modality-specific knowledge for improved robustness to corrupted multimodal images. In addition, three state-of-art attention-based multimodal fusion models are adapted to address corrupted multimodal data in V-I ReID, allowing to dynamically balance each modality importance. Recently, evaluation protocols have been proposed to assess the robustness of ReID models under challenging real-world scenarios. However, these protocols are limited to unimodal V settings. For realistic evaluation of multimodal (and cross-modal) V-I person ReID models, we propose new challenging corrupted datasets for scenarios where V and I cameras are co-located (CL) and not co-located (NCL). Finally, the benefits of our Masking and Local Multimodal Data Augmentation (ML-MDA) strategy are explored to improve the robustness of ReID models to multimodal corruption. Our experiments on clean and corrupted versions of the SYSU-MM01, RegDB, and ThermalWORLD datasets indicate the multimodal V-I ReID models that are more likely to perform well in real-world operational conditions. In particular, our ML-MDA is an important strategy for a V-I person ReID system to sustain high accuracy and robustness when processing corrupted multimodal images. Also, our multimodal ReID model MMSF outperforms every method under CL and NCL camera scenarios.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.