Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Deep Learning Based Channel Estimation in High Mobility Communications Using Bi-RNN Networks (2305.00208v1)

Published 29 Apr 2023 in cs.IT, cs.AI, and math.IT

Abstract: Doubly-selective channel estimation represents a key element in ensuring communication reliability in wireless systems. Due to the impact of multi-path propagation and Doppler interference in dynamic environments, doubly-selective channel estimation becomes challenging. Conventional channel estimation schemes encounter performance degradation in high mobility scenarios due to the usage of limited training pilots. Recently, deep learning (DL) has been utilized for doubly-selective channel estimation, where convolutional neural network (CNN) networks are employed in the frame-by-frame (FBF) channel estimation. However, CNN-based estimators require high complexity, making them impractical in real-case scenarios. For this purpose, we overcome this issue by proposing an optimized and robust bi-directional recurrent neural network (Bi-RNN) based channel estimator to accurately estimate the doubly-selective channel, especially in high mobility scenarios. The proposed estimator is based on performing end-to-end interpolation using gated recurrent unit (GRU) unit. Extensive numerical experiments demonstrate that the developed Bi-GRU estimator significantly outperforms the recently proposed CNN-based estimators in different mobility scenarios, while substantially reducing the overall computational complexity.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube