Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Data-Driven Subgroup Identification for Linear Regression (2305.00195v1)

Published 29 Apr 2023 in cs.LG and stat.ML

Abstract: Medical studies frequently require to extract the relationship between each covariate and the outcome with statistical confidence measures. To do this, simple parametric models are frequently used (e.g. coefficients of linear regression) but usually fitted on the whole dataset. However, it is common that the covariates may not have a uniform effect over the whole population and thus a unified simple model can miss the heterogeneous signal. For example, a linear model may be able to explain a subset of the data but fail on the rest due to the nonlinearity and heterogeneity in the data. In this paper, we propose DDGroup (data-driven group discovery), a data-driven method to effectively identify subgroups in the data with a uniform linear relationship between the features and the label. DDGroup outputs an interpretable region in which the linear model is expected to hold. It is simple to implement and computationally tractable for use. We show theoretically that, given a large enough sample, DDGroup recovers a region where a single linear model with low variance is well-specified (if one exists), and experiments on real-world medical datasets confirm that it can discover regions where a local linear model has improved performance. Our experiments also show that DDGroup can uncover subgroups with qualitatively different relationships which are missed by simply applying parametric approaches to the whole dataset.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube