Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Improving CFD simulations by local machine-learned correction (2305.00114v1)

Published 28 Apr 2023 in physics.flu-dyn and cs.LG

Abstract: High-fidelity computational fluid dynamics (CFD) simulations for design space explorations can be exceedingly expensive due to the cost associated with resolving the finer scales. This computational cost/accuracy trade-off is a major challenge for modern CFD simulations. In the present study, we propose a method that uses a trained machine learning model that has learned to predict the discretization error as a function of largescale flow features to inversely estimate the degree of lost information due to mesh coarsening. This information is then added back to the low-resolution solution during runtime, thereby enhancing the quality of the under-resolved coarse mesh simulation. The use of a coarser mesh produces a non-linear benefit in speed while the cost of inferring and correcting for the lost information has a linear cost. We demonstrate the numerical stability of a problem of engineering interest, a 3D turbulent channel flow. In addition to this demonstration, we further show the potential for speedup without sacrificing solution accuracy using this method, thereby making the cost/accuracy trade-off of CFD more favorable.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube